Phosphorylation Controls Autoinhibition of Cytoplasmic Linker Protein-170
نویسندگان
چکیده
Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150(Glued) (J. Cell Biol. 2004: 166, 1003-1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an "open" conformation and a higher binding affinity for growing MT ends and p150(Glued) as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the "folded back" conformation shows decreased MT association and does not interact with p150(Glued). We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.
منابع مشابه
Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments.
CLIP-170 is implicated in the formation of kinetochore-microtubule attachments through direct interaction with the dynein/dynactin complex. However, whether this important function of CLIP-170 is regulated by phosphorylation is unknown. Herein, we have identified polo-like kinase 1 (Plk1) and casein kinase 2 (CK2) as two kinases of CLIP-170 and mapped S195 and S1318 as their respective phosphor...
متن کاملCLIP-170 recruits PLK1 to kinetochores during early mitosis for chromosome alignment.
The cytoplasmic linker protein (CLIP)-170, an outer kinetochore protein, has a role in kinetochore-microtubule attachment and chromosome alignment during mitosis. However, the mechanism by which CLIP-170 is involved in chromosome alignment is not known. Here, we show that CLIP-170 colocalizes with Polo-like kinase 1 (PLK1) at kinetochores during early mitosis. Depletion of CLIP-170 results in a...
متن کاملA role for regulated binding of p150Glued to microtubule plus ends in organelle transport
A subset of microtubule-associated proteins, including cytoplasmic linker protein (CLIP)-170, dynactin, EB1, adenomatous polyposis coli, cytoplasmic dynein, CLASPs, and LIS-1, has been shown recently to target to the plus ends of microtubules. The mechanisms and functions of this binding specificity are not understood, although a role in encouraging microtubule elongation has been proposed. To ...
متن کاملStructural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition.
Cytoplasmic linker protein 170 (CLIP-170) is a prototype of the plus end-tracking proteins that regulate microtubule dynamics, but it is obscure how CLIP-170 recognizes the microtubule plus end and contributes to polymerization rescue. Crystallographic, NMR, and mutation studies of two tandem cytoskeleton-associated protein glycine-rich (CAP-Gly) domains of CLIP-170, CAP-Gly-1 and CAP-Gly-2, re...
متن کاملThe microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis
Microtubule dynamics are modulated by regulatory proteins that bind to their plus ends (+TIPs [plus end tracking proteins]), such as cytoplasmic linker protein 170 (CLIP-170) or end-binding protein 1 (EB1). We investigated the role of +TIPs during phagocytosis in macrophages. Using RNA interference and dominant-negative approaches, we show that CLIP-170 is specifically required for efficient ph...
متن کامل